Projectivity and flatness over the endomorphism ring of a finitely generated module

نویسندگان

  • Stefaan Caenepeel
  • T. Guédénon
چکیده

Let A be a ring, and Λ a finitely generated A-module. We give necessary and sufficient conditions for projectivity and flatness of a module over the endomorphism ring of Λ.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Projectivity and Flatness over the Colour Endomorphism Ring of a Finitely Generated Graded Comodule

Let k be a field, G an abelian group with a bicharacter, A a colour algebra; i.e., an associative graded k-algebra with identity, C a graded A-coring that is projective as a right A-module, C∗ the graded dual ring of C and Λ a left graded C-comodule that is finitely generated as a graded right C∗-module. We give necessary and sufficient conditions for projectivity and flatness of a graded modul...

متن کامل

Projectivity and Flatness over the Endomorphism Ring of a Finitely Generated Comodule

Let k be a commutative ring, A a k-algebra, C an A-coring that is projective as a left A-module, ∗C the dual ring of C and Λ a right C-comodule that is finitely generated as a left ∗C-module. We give necessary and sufficient conditions for projectivity and flatness of a module over the endomorphism ring EndC(Λ). If C contains a grouplike element, we can replace Λ with A.

متن کامل

MULTIPLICATION MODULES THAT ARE FINITELY GENERATED

Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a charac...

متن کامل

On finitely generated modules whose first nonzero Fitting ideals are regular

A finitely generated $R$-module is said to be a module of type ($F_r$) if its $(r-1)$-th Fitting ideal is the zero ideal and its $r$-th Fitting ideal is a regular ideal. Let $R$ be a commutative ring and $N$ be a submodule of  $R^n$ which is generated by columns of  a matrix $A=(a_{ij})$ with $a_{ij}in R$ for all $1leq ileq n$, $jin Lambda$, where $Lambda $ is a (possibly infinite) index set.  ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2004  شماره 

صفحات  -

تاریخ انتشار 2004